Qual a função da clorofila na fotossíntese que relação tem essa função com a síntese de ATP é de NADH?

Os vegetais verdes possuem, nas suas células, organoides chamados cloroplastos, onde se processa o fenômeno da fotossíntese. Os cloroplastos transformam a energia luminosa em energia química através da equação:

12H2O + 6CO2 luz clorofila C6H12O6 + 6 H2O + 6 O2

A fotossíntese pode ser subdividida em duas etapas: fotoquímica ou luminosa e química ou escura.

Na fase fotoquímica, a energia luminosa, absorvida pelas clorofilas, será utilizada na síntese de dois compostos energéticos, o ATP e o NADPH2. A síntese de ATP se faz a partir do ADP e fosfato e é chamada fotofosforilação. O NADPH2 se forma quando a molécula da água é quebrada nos seus componentes, isto é, oxigênio e hidrogênio. O oxigênio é liberado como subproduto da fotossíntese, e o hidrogênio é utilizado na redução do NADP a NADPH2.

Na fase química ocorre: absorção e fixação de CO2; redução do CO2 pelo NADPH2, consumindo a energia do ATP e produzindo a glicose, rica em energia.

Os vegetais, os animais e os decompositores liberam a energia dos compostos sintetizados, na fotossíntese, durante a respiração. A respiração aeróbia ocorre nas mitocôndrias dos eucariontes e pode ser expressa através da equação:

C6H12O6 + 6H2O + 6O2 12H2O + 6CO2 + Energia

A energia liberada é utilizada na manutenção dos fenômenos vitais.

Podemos dividir a respiração celular nas seguintes etapas: glicólise, Ciclo de Krebs e cadeia respiratória.

Alguns dos ATPs formados durante a respiração celular são produzidos diretamente durante o processo de glicólise, outros se originam da fosforilação oxidativa que ocorre durante a cadeia respiratória e da qual participam as moléculas de NADH2, FADH2 e GTP, formadas durante a glicólise e o ciclo de Krebs.

Eis, a seguir, mais detalhadamente, o que se produz em cada uma das etapas:

1. Glicólise

Ocorre no citoplasma da célula e produz ácido pirúvico a partir de glicose. Esse processo gera 2 ATPs e 2 NADH2. Cada NADH2 produzido na glicólise será convertido em 3 ATPs durante a cadeia respiratória. Portanto, ao final de todos os processos, pode-se dizer que o saldo total da glicólise é de 8 ATPs.

Para cada molécula de glicose degradada são formadas 2 moléculas de ácido pirúvico. Antes da próxima etapa, o ácido pirúvico reage com a coenzima A originando a acetil-coenzima A (acetil-CoA). Nesse processo formam-se 2 NADH2 que irão originar, durante a cadeia respiratória, 6 ATPs. Portanto, o saldo total da conversão ácido pirúvico em acetil-CoA é de 6 ATPs.

2. Ciclo de Krebs

Ocorre na matriz mitocondrial. Durante o ciclo são formados: 6 NADH2, que irão originar 18 ATPs durante a cadeia respiratória; 2 moléculas de FADH2 sendo que, cada uma, durante a cadeia respiratória, irá formar 2 ATPs (total = 4 ATPs), e 2 moléculas de GTP, sendo que cada uma originará 1 ATP durante a cadeia respiratória (total = 2 ATPs). Portanto, ao final da cadeia respiratória, o Ciclo de Krebs permitirá a formação de 24 ATPs.

3. Cadeia respiratória

Ocorre nas cristas mitocondriais e promove a conversão das moléculas produzidas durante as fases anteriores (NADH2, FADH2 e GTP) em moléculas de ATP.

Resumindo

  • Glicólise produz: 2 ATP + 2 NADH2

    Conversão do ácido pirúvico em acetil-CoA: 2 NADH2

  • Ciclo de Krebs: 6 NADH + 2 FADH2 + 2GTP

    Cadeia transportadora de elétrons:

  • 2 NADH2 (glicólise) = 6 ATPs
  • 2NADH2 (conversão do ácido pirúvico)= 6 ATPs
  • 6 NADH2 (Ciclo de Krebs) = 18 ATPs
  • 2 FADH2 (Ciclo de Krebs)= 4 ATPs
  • 2 GTP (Ciclo de Krebs)= 2 ATPs

    Saldo total = 38 ATPs

Confira o ciclo da fotossíntese

  • Qual a função da clorofila na fotossíntese que relação tem essa função com a síntese de ATP é de NADH?

Leia também

  • Fotossíntese: Vegetais "fabricam" seus próprios alimentos
  • Vida e energia - Fotossíntese e fermentação
  • Vida e energia - Respiração aeróbia
  • Fotossíntese e vida na Terra: Produção de oxigênio e glicose
  • Algumas bactérias realizam fotossíntese
  • Quais seres vivos fazem a fotossíntese?

Fotossíntese é um processo pelo qual ocorre a conversão da energia solar em energia química para realização da síntese de compostos orgânicos. A fotossíntese é a principal responsável pela entrada de energia na biosfera e é realizada por organismos denominados fotossintetizantes, como plantas e algas.

A seguir, aprofundaremos um pouco mais nesse tema, apresentando a forma como ocorre esse processo, suas etapas e importância e fazendo uma comparação com um outro processo importante de obtenção de energia, a quimiossíntese.

Saiba mais: Conceitos básicos de botânica: indispensáveis para o entendimento da área

Trata-se de um processo realizado por organismos autotróficos fotossintetizantes, como plantas, algas e alguns procariontes. Esses organismos captam a luz solar, convertem-na em energia química, que será utilizada para a produção de compostos orgânicos, baseada em água e dióxido de carbono. Um dos produtos finais desse processo é o oxigênio, que é liberado no ambiente.

Qual a função da clorofila na fotossíntese que relação tem essa função com a síntese de ATP é de NADH?
Na fotossíntese, a luz solar é convertida em energia química por organismos fotossintetizantes, como as plantas.

A fotossíntese ocorre em duas etapas (descritas mais adiante) nos cloroplastos, organelas presentes nas células dos organismos eucariontes fotossintetizantes. Essas organelas armazenam os pigmentos fotossintetizantes, que são responsáveis pela absorção da luz. Dentre esses diversos pigmentos, como as clorofilas, carotenoides e ficobilinas, destaca-se a clorofila-a como principal, sendo encontrada em todos os organismos fotossintetizantes.

Saiba mais: Teoria endossimbiótica: a origem de organelas a partir de procariontes

Etapas da fotossíntese

Qual a função da clorofila na fotossíntese que relação tem essa função com a síntese de ATP é de NADH?
A fotossíntese ocorre nos cloroplastos, uma organela que, entre outras características, apresenta uma dupla membrana.

A fotossíntese ocorre em duas etapas denominadas: fase ou reação luminosa ou fotoquímica e fase ou reação de fixação de carbono:

  • Fase ou reação luminosa ou fotoquímica

Nessa fase estão envolvidos dois fotossistemas, fotossistema I e fotossistema II. No primeiro, os pigmentos absorvem comprimentos de ondas de 700 nm ou maiores; já no segundo, absorvem comprimentos de ondas 680 nm ou menores. Os componentes dos dois fotossistemas são o complexo antena e o centro de reação.

No fotossistema II, moléculas de pigmento do complexo antena absorvem a energia luminosa, e os elétrons energizados são transferidos de uma molécula a outra, até atingir o centro de reação. Nesse local, uma das moléculas de clorofila-ado par ali presente absorve a energia, e um de seus elétrons é transferido para um receptor de elétrons. Esses elétrons são substituídos por outros provenientes da fotólise da água.

A fotólise da água ocorre no fotossistema II, mediante ação de uma enzima, e apresenta como produto final do processo: dois elétrons, dois íons hidrogênio e um átomo de oxigênio. Os H+ são lançados no interior do espaço do tilacoide, do qual serão removidos em reações posteriores.

Não pare agora... Tem mais depois da publicidade ;)

O  átomo de oxigênio liberado nesse processo será responsável, junto a outro átomo de oxigênio liberado de outra molécula de água, pela formação de O2. Os elétrons fotoexcitados passarão para o fotossistema I  por meio de uma cadeia transportadora de elétrons. O processo de fotólise da água também liberará prótons que serão bombardeados para o lúmen do tilacoide, estimulando a síntese de ATP.

Enquanto essas reações ocorrem no fotossistema II, no fotossistema I a energia luminosa é transferida pelas moléculas de pigmentos até o centro de reação, energizando um elétron de um dos pares de moléculas de clorofila-a. Esse elétron será transferido para o aceptor primário de elétrons.

O elétron proveniente do fotossistema II é recebido ao final da cadeia de transporte de elétrons. Estes serão transferidos a uma segunda cadeia de transporte por meio da proteína ferredoxina, o aceptor final dos elétrons. Ocorre então a transferência dos elétrons para NADP+, reduzindo-os à NADPH, um processo catalizado pela enzima NADP+ redutase.

O fotossistema I pode atuar de forma independente do fotossistema II num processo denominado fluxo cíclico de elétrons. Esse é realizado, por exemplo, por algumas bactérias e produz ATP, no entanto, não produz NADPH ou O2.

  • Fase ou reação de fixação do carbono

Ocorre por meio de reações, executadas em três etapas, denominadas Ciclo de Calvin, no estroma do cloroplasto. As moléculas de NADPH e ATP, produzidas na fase luminosa para a produção de açúcares a partir da redução do carbono fixado, serão utilizadas nessa fase.

A primeira etapa consiste na fixação do carbono a um açúcar constituído por cinco carbonos com dois grupos fosfato, conhecido como ribulose 1,5-bifosfato,formando, geralmente,duas moléculas de 3-fosfoglicerato ou ácido 3-fosfoglicérico (PGA).

Na segunda etapa, ocorre a redução do 3-fosfoglicerato a gliceraldeído 3-fosfato ou 3- fosfogliceraldeído (PGAL). Na terceira etapa, cinco das seis moléculas de gliceraldeído 3-fosfato formadas na segunda são usadas para regenerar três moléculas de ribulose 1,5-bifosfato.

Importância da fotossíntese

Qual a função da clorofila na fotossíntese que relação tem essa função com a síntese de ATP é de NADH?
A energia contida na matéria orgânica produzida pelos organismos heterotróficos é transmitida aos heterotróficos pela cadeia alimentar.

Como dito, a fotossíntese é um processo pelo qual são produzidas moléculas orgânicas, com base em água e dióxido de carbono, e que apresenta também como produto final o oxigênio, que é liberado no ambiente.

Assim, trata-se de um processo essencial para a existência da vida na Terra da maneira que a encontramos hoje, pois é por meio da fotossíntese que o oxigênio existente no planeta, essencial para a sobrevivência de grande parte dos organismos, é produzido.

Além disso, a fotossíntese também é responsável pela produção de energia para praticamente todos os seres vivos. Os organismos autotróficos fotossintetizantes são a base das cadeias alimentares tanto terrestres quanto aquáticas. A energia presente na matéria orgânica produzida por eles é transmitida aos seres heterotróficos pela cadeia alimentar.

Leia mais: Pirâmide de energia: a quantidade de energia em cada nível trófico

Fotossíntese e quimiossíntese

A fotossíntese é um dos principais processos de produção de matéria orgânica, no entanto, não é o único. Um outro, realizado apenas por alguns organismos, como algumas espécies de bactérias, é a quimiossíntese.

A quimiossíntese utiliza a energia obtida pela oxidação de moléculas inorgânicas — como metano, amônia,  nitritos ou sulfetos de hidrogênio — para  realizar um conjunto de reações que darão origem à matéria orgânica (glicose) utilizada como fonte nutritiva para os seres autotróficos.

Por Helivania Sardinha dos Santos

Qual e a função dá clorofila no processo de fotossíntese?

Qual a função da clorofila? A clorofila é a substância responsável pela captação de luz pelos seres que a têm, garantindo que os seres vivos que realizam fotossíntese possam produzir o próprio alimento.

O que e ATP e NADPH?

É dependente de substâncias produzidas na etapa fotoquímica, o ATP e o NADPH, que são utilizados na redução dos átomos de carbono do CO$$$_2_2$$$, incorporando-os em moléculas orgânicas, os carboidratos, onde o ATP fornece a energia, o NADPH os hidrogênios e o CO$$$_2_2$$$, o carbono e oxigênio.

Como a fotossíntese produz ATP?

A síntese de ATP se faz a partir do ADP e fosfato e é chamada fotofosforilação. O NADPH2 se forma quando a molécula da água é quebrada nos seus componentes, isto é, oxigênio e hidrogênio. O oxigênio é liberado como subproduto da fotossíntese, e o hidrogênio é utilizado na redução do NADP a NADPH2.

Para que a etapa produtora de ATP e NADPH ocorra são essenciais?

Para a etapa produtora de ATP e NADPH ocorra, são essenciais radiação luminosa e água. A radiação luminosa atua tanto na fosforilação cíclica quanto na acíclica (fase clara da fotossíntese). Já a água atua repondo elétrons na clorofila P680 (fosforilação acíclica), por meio do processo de fotólise da água.