Substâncias que conduzem corrente elétrica no estado líquido

As substâncias possuem características diferentes, em razão do tipo de ligação química existente entre os átomos de seus elementos, entre outros motivos.

Existem três tipos de ligações químicas, que são: iônica, covalente e metálica, sendo que as principais características ou propriedades de cada uma são:

Substâncias iônicas:

  • A atração entre seus íons acaba produzindo aglomerados com formas geométricas bem definidas, denominados retículos cristalinos;
  • São sólidas na temperatura ambiente;
  • Apresentam elevados pontos de fusão e ebulição;
  • São duras e quebradiças;
  • Conduzem corrente elétrica quando dissolvidas na água e quando fundidas.

Substâncias moleculares:

  • Em condições ambientes podem ser encontradas nos três estados físicos: gasoso, líquido e sólido;
  • Pontos de fusão e ebulição menores que os das substâncias iônicas;
  • Quando puras, não conduzem corrente elétrica.

Substâncias metálicas:

  • Possuem brilho metálico característico;
  • São boas condutoras de eletricidade e calor;
  • Possuem densidade elevada;
  • Possuem pontos de fusão e ebulição elevados;
  • São maleáveis e apresentam ductibilidade;
  • Apresentam resistência à tração.

Para distinguir se determinadas substâncias do nosso dia a diasão iônicas, moleculares ou metálicas, podem-se analisar essas características e compará-las. Duas propriedades bem eficazes nesse sentido, por exemplo, são os pontos de fusão e ebulição. Vejamos como podemos usá-los para definir o tipo de ligação química existente em cada substância:

Não pare agora... Tem mais depois da publicidade ;)

Objetivo:

Observar os estados físicos de substâncias moleculares, iônicas e metálicas sob as mesmas condições de temperatura e pressão.

Materiais e Reagentes:

  • Tampa de lata de leite em pó;
  • Parafusos e martelo;
  • 5 colheres pequenas;
  • 5 g de cada uma das substâncias a seguir: enxofre em pó (S8), naftaleno (naftalina triturada – C10H8), cloreto de sódio (sal de cozinha – NaCl), sacarose (açúcar refinado – C12H22O11) e sulfato de cálcio (giz em pó – CaSO4);
  • Suporte com tela para aquecimento;
  • Lamparina a álcool e fósforos.

  Procedimento experimental:

  1. Bata nos parafusos com o martelo sobre a tampa da lata, fazendo cinco cavidades, porém sem perfurar;
  2. Coloque cada amostra com uma colher diferente em uma das cavidades separadas;
  3. Leve para aquecer;
  4. Anote as observações.

Resultados e Discussão:

Peça aos alunos para fazerem uma tabela colocando em ordem cronológica as substâncias que sofreram modificações. Forneça para eles uma tabela com a temperatura de fusão e de ebulição dessas substâncias e peça para eles compararem com os dados obtidos.

Por fim, eles devem chegar à conclusão de qual é a ligação que une os átomos de cada uma das substâncias e indicar quais características observadas durante o experimento apontaram para tais resultados.


Por Jennifer Fogaça
Graduada em Química

Artigos relacionados


Substâncias que conduzem corrente elétrica no estado líquido

Estratégias de ensino-aprendizagem

Produção de gás carbônico de forma experimental

Conheça uma estratégia de ensino para tratar de diversos assuntos da Química Inorgânica por meio da produção de gás carbônico de forma...

Uma solução é capaz de conduzir corrente elétrica? Por que levamos um choque maior quando estamos molhados do que quando estamos secos? O que é “água de bateria”? Questões como essas nos remetem à mesma resposta: eletrólitos.

A corrente elétrica, como sabemos, é o fluxo ordenado de elétrons, ou seja, os elétrons se movimentando de um ponto a outro. Para isso acontecer, duas coisas são fundamentais: uma diferença de potencial, capaz de atrair os elétrons e um meio de propagação que permita sua passagem.

Bons e maus condutores

A diferença de potencial pode ser representada, por exemplo, por uma pilha. O meio condutor pode ser – em tese – qualquer meio material (constituído por matéria). Só que alguns são bons condutores e outros são maus condutores, quer dizer, alguns permitem que os elétrons caminhem facilmente e outros dificultam muito ou impedem a passagem dos elétrons.

Os eletrólitos são soluções que permitem a passagem dos elétrons, mas isso não garante que eles possam trafegar livremente. Existem eletrólitos fortes, que praticamente não impedem a passagem dos elétrons, eletrólitos médios, que apresentam alguma resistência à corrente, eletrólitos fracos, que se opõem fortemente – mas permitem – a passagem da corrente, e os não-eletrólitos, soluções que não permitem que a corrente elétrica os atravesse.

Como funciona o eletrólito?

Quando aplicamos uma diferença de potencial em um material, o pólo positivo começa a atrair os elétrons desse material que, chegando ao pólo, caminham pelo circuito até chegar na outra ponta, o pólo negativo, onde podem ser reinseridos no material. Está complicado? Vamos pensar diretamente nos eletrólitos que a explicação ficará mais clara.

Pense em uma solução de cloreto de sódio em água. Sabemos o sal irá se dissociar em íons Na+ e Cl–. Quando mergulhamos dois fios na solução, um ligado ao pólo positivo e um ao negativo de uma pilha, o positivo começa a atrair os íons de carga negativa – no caso o cloreto (Cl–) – por possuírem cargas elétricas opostas.

Ao atingir o pólo positivo, o elétron excedente do íon é capturado pelo pólo fazendo com que o Cl– se transforme em Cl. O pólo negativo atraiu os íons sódio (Na+) e o elétron capturado percorre todo o circuito até chegar ao pólo negativo, encontrando então o íon. Como o íon é positivo, ele tem falta de elétrons, portanto ele captura o elétron “disponível” no pólo negativo e também deixa de ser um íon, neutralizando-se.

Cloreto de sódio

Acredito que esse exemplo tornou o mecanismo mais compreensível, mas gostaria de ressaltar que no caso do NaCl não é exatamente assim que acontece. Você poderá perguntar: então por que esse exemplo, já que não é bem assim? A idéia é que você entenda primeiramente o mecanismo. Para fins didáticos, o cloreto de sódio é um ótimo exemplo, pois estamos muito habituados a ele.

Você percebeu que – para uma solução permitir a condução de corrente – uma coisa parece fundamental: a presença de íons na solução. Os íons são as “caronas” que citei anteriormente, são eles que permitirão o fluxo eletrônico.

Qualquer solução tem íons?

Não. Nem todas as substâncias quando em solução libera íons. Compostos iônicos como os sais e bases já são formadas por íons e, quando em solução, os deixam livres, em um processo que chamamos de dissociação. Compostos como os ácidos, que não possuem íons quando em solução sofrem um processo que chamamos de ionização e passando a possuí-los, embora livres. Substâncias moleculares que não sofram ionização não liberarão nenhum tipo de íon quando em solução.

Dessa forma, podemos dizer que:

·Substâncias iônicas, quando em solução ou quando fundidas (líquidas), liberam íons, portanto conduzem corrente elétrica.

·Substâncias moleculares, quando em solução, se sofrerem ionização, liberam íons e conduzem corrente elétrica. Se não sofrerem ionização não conduzem corrente.

·Substâncias iônicas ou moleculares, quando no estado sólido não liberam íons e não conduzem corrente elétrica.

·Para que uma solução seja um eletrólito é necessária a existência de íons livres.

Respondendo às questões iniciais:

1) Por que levamos um choque maior quando estamos molhados do que quando estamos secos?

R.: Porque, quando molhados, os sais existentes em nossa pele, resultado da transpiração, formam um eletrólito forte, facilitando a passagem da corrente elétrica.

2) O que é “água de bateria”?

R.: É um eletrólito capaz de permitir a troca de elétrons entre as placas que constituem a bateria. Normalmente são soluções ácidas.

Quais substâncias conduzem corrente elétrica no estado líquido?

Substâncias iônicas, quando em solução ou quando fundidas (líquidas), liberam íons, portanto conduzem corrente elétrica.

E uma substância que conduz eletricidade apenas no estado líquido e não no estado sólido?

As substâncias iônicas são condutores de corrente elétrica apenas em estado líquido. Essas substâncias são constituídas de íons de cargas opostas que se mantêm unidas devido a força de atração.

Quais delas não conduzem corrente elétrica no estado sólido?

Os compostos moleculares não conduzem corrente elétrica no estado sólido, nem quando dissolvidos em água. Soluções ácidas são a exceção.

Quais compostos que conduzem corrente elétrica no estado sólido?

A grafita é o único composto covalente condutor de corrente elétrica que pode ser encontrado nos estados sólido e líquido.