Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

O cientista Antoine Henri Becquerel (1852-1908), juntamente ao casal de cientistas Pierre Curie (1859-1906) e Marie Curie (1867-1934), descobriu que o minério de sulfato duplo de potássio e a uralina di-hidratada (K2UO2(SO4)2 . 2 H2O) emitia radiação porque continha em sua constituição o elemento urânio. Chegaram a essa conclusão porque todos os minérios de urânio emitiam radioatividade.

Desse modo, o primeiro elemento químico descoberto como sendo naturalmente radioativo (que realiza emissões espontâneas) foi o urânio.

Entretanto, nesses minérios, o elemento urânio não era a única fonte emissora de radiação. Estudos mais aprofundados mostraram que havia também outros isótopos radioativos nesses minérios, que eram provenientes do decaimento sucessivo do urânio.

Por exemplo, o urânio-238 sofre decaimento, emitindo uma partícula alfa (2 prótons e 2 nêutrons), e forma outro elemento químico, o tório-234. Porém, o tório-234 também é radioativo, porque o seu número atômico é igual a 90, e todos os elementos químicos que possuem número atômico maior que 83 possuem núcleos instáveis que se desintegram.

Assim, o tório-234 emite uma partícula beta, transformando-se no protactínio-234, que é radioativo e também se desintegra. Esse processo continua até que seja formado um núcleo estável de chumbo-206, que não se desintegra:

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

Todos esses elementos radioativos que vieram da desintegração do urânio-238 formam uma série ou família de desintegração radioativa. Com base nesse raciocínio, chegamos à seguinte definição:

Séries radioativas: o conjunto de elementos que têm origem na emissão de partículas alfa e beta, originando, como produto final, um isótopo estável do chumbo.

Não pare agora... Tem mais depois da publicidade ;)

Todos os elementos radioativos existentes originaram-se de um dos três isótopos a seguir: Urânio-238, Urânio-235 ou Tório-234. Assim, temos a série radioativa do urânio, a série radioativa do actínio (que, na verdade, é a serie do urânio-235, porque quando esse nome foi atribuído a essa série, acreditava-se que o primeiro elemento fosse o actínio) e a série radioativa do tório.

Abaixo é evidenciada a série radioativa do tório:

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

Visto que a emissão de uma partícula alfa diminui o número de massa do elemento em 4 unidades e a emissão de uma partícula beta não altera esse número de massa, é possível descobrir a série à qual determinado elemento radioativo pertence. Basta dividir o seu número de massa por 4 e verificar o resultado:

  • Se o resultado der exato, isto é, com resto igual a zero → série do tório;
  • Se der resto igual a 2 → série do urânio-238;
  • Se der resto igual a 3 → série do urânio-235 (série do actínio).

Exemplo: Descubra à qual série de desintegração radioativa os seguintes elementos pertencem:

  1. 228Ra:
  2. 234Th:
  3. 231Pa:

Resolução:

  1. 228Ra: 228 ÷ 4 = 57 (exato). Ele faz parte da série do tório.

  2. 234Th: 234 ÷ 4 = 58 e restam 2. Ele faz parte da série do urânio-238.

  1. 231Pa: 231 ÷ 4 = 58 e restam 3. Ele faz parte da série do urânio-235 ou série do actínio.

  • Descoberta:

Conforme dito no texto “Emissão alfa (α)”, o químico neozelandês Ernest Rutherford realizou um experimento no qual colocou uma amostra de um material radioativo em um bloco de chumbo, com um furo para direcionar as emissões radioativas; e submeteu essas radiações a um campo eletromagnético.

Dentre os resultados obtidos, Rutherford percebeu que um feixe de radiações era atraído pela placa positiva, o que o levou a concluir que essas emissões eram de carga negativa. Essa radiação ficou sendo chamada de raiosou emissões beta (β).

Visto que os raios sofriam deflexão quando submetidos a um campo eletromagnético, isso o levou a concluir também que eles eram na verdade compostos por partículas que apresentam massa. A massa dessas partículas, porém, era menor que a das partículas que constituíam as emissões alfa, porque as partículas β sofriam maior desvio.

  • Constituição:

Em 1900, o físico francês Antoine-Henri Bequerel (1852-1908) comparou esses desvios sofridos pelas partículas beta com os desvios que os elétrons realizavam, quando também eram submetidos a um campo eletromagnético. O resultado foi que eram iguais; com isso, viu-se que as partículas beta eram na realidade elétrons.

Em razão disso, a representação dessa partícula é dada por 0-1β ou β-. Veja que a emissão beta apresenta número de massa (A) igual a zero, pois os elétrons não fazem parte do núcleo do átomo.

  • Consequências da emissão de partículas beta para a estrutura do átomo:

A emissão de uma partícula beta (0-1β) é resultado do rearranjo do núcleo instável do átomo radioativo de modo a adquirir estabilidade. Para tanto, ocorre um fenômeno no núcleo, no qual um nêutron se decompõe originando três novas partículas: um próton, um elétron (partícula β) e um neutrino. O antineutrino e o elétron são emitidos; o próton, no entanto, permanece no núcleo.

10n    11p   + 0-1e   + 00ν
nêutron  próton  elétron  neutrino

Não pare agora... Tem mais depois da publicidade ;)

Dessa forma, quando um átomo emite uma partícula beta, ele se transforma em um novo elemento com o mesmo número de massa (porque o nêutron que havia antes foi “substituído” pelo próton), mas o seu número atômico (Z = prótons no núcleo) aumenta uma unidade.

Veja a seguir como isso ocorre de modo genérico:

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

Veja um exemplo de decaimento beta que ocorre com o isótopo 14 do elemento carbono:

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

A radiação beta é constituída de elétrons emitidos à grande velocidade pelos núcleos dos átomos radioativos, sendo que essa velocidade inicial é de 100 000 km/s até 290 000 km/s e chegam a atingir 95% da velocidade da luz.

A massa da radiação β é a mesma de um elétron, que é 1840 vezes menor que a de um próton ou de um nêutron. A radiação alfa (α) emite dois prótons e dois nêutrons, assim a massa das partículas α é 7360 vezes maior que a das partículas β. Isso explica o fato de as partículas α sofrerem um desvio menor que as partículas β, conforme Rutherford havia verificado em seu experimento.

  • Poder de penetração:

Seu poder de penetração é médio, sendo de 50 a 100 vezes mais penetrante que as partículas alfa. Estas podem atravessar uma folha de papel, mas são detidas por uma chapa de chumbo de apenas 2 mm ou de alumínio de 2 cm. Quando incidem no corpo humano, podem penetrar até 2 cm.

  • Danos causados ao ser humano:

Visto que seu poder de penetração sobre o corpo humano é de apenas 2 cm, as partículas β podem penetrar na pele, causando queimaduras, mas são barradas antes de atingir órgãos mais internos do corpo.

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um urânio

Por Jennifer Fogaça
Graduada em QUímica

Quantas partículas alfa α e quantas partículas beta β precisam ser emitidas para transformar um Urânio 238 a 238 Z 92 em rádio a 226 Z 88 ): *?

E sabemos que cada partícula beta emitida o átomo converte 1 nêutron e 1 próton, aumentando em 1 unidade o número atômico. Então para ir de Z=86 para Z=88, o átomo liberou 2 partículas beta. Alternativa correta: Letra C.

Qual o número de partículas alfa e beta emitidas?

As três emissões radioativas naturais são: partículas alfa (2 prótons e 2 nêutrons), partículas beta (1 elétron) e radiações gama (radiação eletromagnética).

Quando um átomo emite uma partícula alfa e em seguida?

02) Quando um átomo emite uma partículaalfa” e, em seguida, duas partículas beta, os átomos inicial e final: a) Têm o mesmo número de massa.

Como se formam as partículas beta?

A emissão de uma partícula beta (0-1β) é resultado do rearranjo do núcleo instável do átomo radioativo de modo a adquirir estabilidade. Para tanto, ocorre um fenômeno no núcleo, no qual um nêutron se decompõe originando três novas partículas: um próton, um elétron (partícula β) e um neutrino.